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Abstract. We report a strict comparison of long-wavelength optical lattice vibrations in 
a superlattice obtained within the macroscopic continuum model and a closely parallel 
microscopic model. It is shown that the proper envelopes of the atomic displacement patterns 
can be found if the uncertainties inherent in any dispersionless theory such as the continuum 
model are appropriately treated. Apart from small discrepancies due to the discrete nature 
of the matter and effective material layer thicknesses the main failure of the continuum 
theory is the neglect of bulk phonon dispersion. 

The interpretation of recent Raman scattering studies [ 1-41 of long-wavelength optical 
phonons in short-period superlattices, particularly (GaAs),, (AlAs) N 2  (001) super- 
lattices, indicates discrepancies in the treatment of Frohlich as well as deformation 
potential electron-phonon interactions in the framework of the conventional dielectric 
continuum theory [5-81. For systems involving thin layers this theory seems to be beyond 
its legitimate limit. The atomic displacements do not fulfil the continuity condition at 
the interfaces. Microscopic descriptions [9-121 appear to be necessary. 

For that reason, in this paper we present a critical comparison of the results for the 
atomic displacements obtained within the continuum theory neglecting bulk phonon 
dispersion and a microscopic model including this dispersion and the atomic structure 
of matter by definition. Thereby the elastic and electric forces acting on the atoms 
are likewise treated. More strictly speaking, for the purpose of comparison with the 
continuum approach in the microscopic theory the elastic forces are described by one 
nearest-neighbour central-force constant and the electric field is spatially averaged 
with respect to the Wigner-Seitz cell of the FCC structure underlying the superlattice 
materials. As a result of the strict comparison of the microscopic and macroscopic 
theories in the case of long-wavelength optical phonons we derive conditions for the 
validity of the continuum approach and its dependence on layer thicknesses, phonon 
propagation direction and mode type. 

Prototypes for superlattices formed by lattice-matched zincblende semiconductors 
and grown in the [OOl]  direction are short-period (GaAs) (AlAs),, superlattices. They 
represent tetragonal crystals with 2(N1 + N 2 )  atoms per elementary cell. Thereby the 
atoms can be labelled by a triple s = abc. The number a = l(2) indicates that the 
considered atom is a cation (anion). The index b characterises the material layer, GaAs 
( b  = 1) or AlAs ( b  = 2), and c indicates the number of molecular layers parallel to the 

0953-8984/90/194363 + 07 $03.50 @ 1990 IOP Publishing Ltd 4363 



4364 F Bechstedt and H Gerecke 

interfaces, i.e. 1 G c G N I  for GaAs and N I  + 1 G c G N I  + N 2  for AlAs. For wavevec- 
tors from the centre of the superlattice Brillouin zone the equations of motion of the sth 
atom in the superlattice elementary cell with the mass M ,  and the effective ion charge e, 
can be written in the form [ 121 

= -es[Ejy(e)6, + D , z ( e ) 8 n z l  (1) 
for the frequency u j ( e )  and the polarisation vector components eje(0) (cv = x ,  y, z )  of 
a long-wavelength phonon from the branch j and propagating in a certain direction Fq = 
sin 8 Fy + cos 0 F z ,  where 8 is the angle between Fq and the superlattice axis F z .  The 
driving forces on the right-hand side are related (apart from a certain constant) to they 
component Ejy (e )  of the spatially averaged electric field and the z component D j z ( e )  of 
the dielectric displacement field. They are defined by 

where the volume Go = a3/4 (where a is the bulk lattice constant) of the zincblende 
Wigner-Seitz cell is introduced and elb = -e2b = eb is assumed because of the charge 
neutrality. 

The short-range part of the effective dynamic matrix on the left-hand side of (1) is 
restricted to the interaction of the first-nearest-neighbour atomic planes parallel to the 
interfaces. It is angle independent. However, its electrical contribution affects only 
displacements parallel to the superlattice axis Fz. The electric-field-induced forces on 
the right-hand side of (1) produce a strong asymmetry with 6 in the lattice vibrations 
corresponding to the reduced symmetry of the superlattice. We mention that because 
of the independence of the long-range fields E J B )  and D,,(e) (2) of atomic number s 
the conventional boundary conditions of electrostatics at interfaces are automatically 
fulfilled. In spite of the simplicity the equations of motion have to be solved numerically 
taking into account appropriate parameters for GaAs and AlAs [12]. 

The continuum theory is directly aimed at optical phonons. We therefore introduce 
the relative atomic dis lacement field for each molecule within a superlattice elementary 
cell by cb,(c, e )  = k f ? l b , ( 6 )  - w e 2 b , ( 6 ) ,  where pb denotes the reduced 
mass of a molecule in the material layer b = 1 , 2. The formal transition of the microscopic 
theory (1) to the continuum approach can be done taking the limit of vanishing atomic 
distances, i.e. a+ 0, under conservation of the material layer thicknesses db = Nba/2. 
Introducing the continuous distance of molecules given by z = ca/2 (a + 0)  and neglect- 
ing the bulk phonon dispersion, one gets, for 0 < z < d l  + d2 = d ,  

- u$Ob(8n.x + - OtObsezleb,e(z, e )  
= - ( e b / G ) [ E , y ( e ) 6 a y  + D , z ( e ) 6 e z 1  (3) 

w+Ob = f b / p b  utob = ( fb  + 4nei/RO)/pb (4) 

with the bulk zone-centre phonons 

and the electric field components 

which are related to each other by Bj(z ,  e )  = Ej ( z ,  8 )  + ( 4 n e b / Q o G ) F b j ( z ,  e ) .  
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The system of equations of motion (3) can be solved analytically. There are two types 
of solution. The first type of solution, the confined optical phonons with frequencies and 
polarisation directions according to 

w j ( e >  = OTOb 

mj(e> = U T 0 6  

E 6 j ( z ,  e>  11 
ebj(z, e )  11 

j = Ton (s polarised) 

j = Ton (p polarised) 

= m L 0 6  e b , ( Z ,  e )  1 1  j = Lon ( p  polarised) 

for the GaAs-like ( b  = 1) and AlAs-like ( b  = 2) modes (n = 1, 2, 3, . . .), are charac- 
terised by vanishing right-hand sides of equations (3), i.e. Ejy (8 )  = D j z ( 8 )  = 0. 

In the case of s-polarised Ton (arbitrary 8 and n), antisymmetric p-polarised Ton/ 
Lon (arbitrary 8, even n) and p-polarised TOn/LOn (8  = 0, arbitrary n) vibrations the 
condition Ejy(8)  = Dj,(8) = 0 is automatically fulfilled and does not give rise to any 
restrictions for the solutions. Because of the neglect of the dispersion of the bulk phonon 
branches, each vibronic level wj (8 )  is independent of the mode index n and, hence, 
highly degenerate. Each orthonormalised and complete set of functions defined in the 
interval 0 < z - dlbb2 < db can be assumed. Starting from the idea of standing waves 
as in the conventional continuum theory [5-81 and in agreement with results of the 
microscopic theory (1) we compose the solutions of trigonometric functions and con- 
stants (cf equation (6)). Additionally we assume continuity of the relative atomic 
displacements [13,14]. This boundary condition corresponds to the vanishing of the 
displacements at the interfaces contrary to the solution for confined phonons usually 
quoted in the literature [5 ,7] .  The confinement gives rise to wavevectors 
qk(8) = nn/d6 for these modes. In the case of symmetric p-polarised Ton/Lon modes 
(8  > 0, odd n) the zero-field components Ejy(8)  = Dj,(S) = 0 correspond to an 
additional condition. Treating again the arbitrariness of the solutions in a suitable way 
the resulting orthonormalised set of envelope functions can be written as 
(0 < z - dl662 < d b )  

{cos[at(e>(z - d 1 8 6 2  -d6/2)1 

- cos[qb, ( e  )d6/2])/sin[q; n=1,3 ,5 ,  . . .  (6) 

sin[(nn/d6)(z - d l  8 b 2  - d6/2)i n=2 ,4 ,6 , .  . . 
e b j w ( z 7  0 )  = a 

where the confinement wavevector q:(8) satisfies the transcendental equation 

q!(8)d6/2 = tan[q:(8)d6/2i (7 )  
for symmetric p-polarised Ton/Lon phonons and propagation directions 8 > 0. For all 
other superlattice phonon branches, q:(8)  = m / d 6  holds in equation (6). We mention 
that there is no arbitrariness if bulk dispersion is included. In this case the boundary 
conditions for the electric fields as well as displacement fields can be simultaneously 
fulfilled. Then equation (6) can be obtained as an exact result in the limit of vanishing 
dispersion. 

For 8 > 0 and Ejy(8)  # 0, Dj,(8) # 0 there are no uncertainties, even in the disper- 
sionless limit. The four p-polarised solutions of the system of integral equations (3) 
missing in the GaAs-like and AIAs-like systems of eigenvectors (6) and making these 
complete [7] are the well known macroscopic interface phonons of the Fuchs-Kliewer 
type [5,7,8].  The polarisation vectors F6,(z, 8 )  have properties which differ remarkably 
from those found for confined phonons [ 141, 
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(i) They are different from zero in GaAs as well as AlAs. 
(ii) Their amplitude is constant with respect to z in each material layer. 
(iii) Their direction varies between Fy and Fz depending on the propagation direction 

8 and the branch character i. 

Contrary to the confined phonons the interface modes exhibit an angular dispersion 
according to the well known implicit dispersion relation [5,7,8] for the frequencies 

In the case of the p-polarised  LO^ phonons and 6’ > 0 the same results have been 
derived by Huang and Zhu [13] for the macroscopic electrostatic potential (Pb,(z, 8 ) .  
This can be verified by comparison of equation (6) in this work and equations (40) and 
(42) in [13] by means of the relation d(Pb,(z, O)/az - ebiZ(z, e ) .  However, the integral 
equation formalism (3) for the relative atomic displacements is more general as the 
Laplace equation for the electrostatic potential. Applying the system of equations (3), 
information about the displacement fields can be also extracted in the limit of vanishing 
macroscopic electric fields, i.e. for s- and p-polarised  TO^ phonons. Apart from the 
generalisation of the results (6) for the  TO^ phonons the inclusion of the anisotropy 
between 6 = 0 and 6 > 0 is essential. It guarantees firstly the correct transition from a 
dispersionless theory to any theory considering the dispersion of bulk phonon bands and 
secondly a correct mode ordering as well as mode identification in agreement with the 
microscopic theory. For example, the second mode in figure 3 of [13] labelled n = 3, has 
to be identified with the dispersive microscopic LOI mode for propagation parallel to the 
superlattice axis ( 8  = 0) [14]. Its confinement wavevector qR(0) = 2.9n/db for 8 > 0 
cannot be related to the labelling n = 3. Rather it only indicates that the microscopic 
LOI mode is for 8 > 0 lower in energy than for the microscopic ~ 0 2  mode. 

The strict comparison of results from the microscopic and macroscopic theories 
requires some agreement and a mutual identification of the modes appearing in the two 
different approaches. More from a technical point of view we identify the positions of 
the interfaces z = 0, d l ,  dl + d 2  in the continuum theory with those of the As layers 
between Ga and AI in the microscopic treatment. Comparing the envelopes (6) derived 
for relative displacements with cation or anion displacement patterns Cs,( 0 )  resulting 
from (1) the normalisation has to be changed by a factor (Mab/pb)”*. The mode identi- 
fication is somewhat problematical, especially for the p-polarised modes and propa- 
gation directions 8 > 0. For all other microscopic or macroscopic optical phonons the 
integer n corresponds to the number of nodes in the displacement pattern. Furthermore, 
the n sequence is directly related to the energy ordering, at least in the microscopic 
approach. In the case of p-polarised modes the energy arrangement of  LO^ or  TO^ can 
be destroyed for 8 > 0 owing to the angular dispersion of the superlattice [lo,  121. One 
question within the continuum theory concerns the assignment of one AlAs-like and 
GaAs-like  LO^ or  TO^ phonon to an interface mode. If an ‘infinite small’ bulk phonon 
dispersion and the limitation n < Nb of the modes are taken into account one finds that 
for odd (even) Nb  LON^ (LO(N~ - 1)) and TOI should be interface phonons [14]. 

One example for such a strict comparison of results from the macroscopic continuum 
theory and a parallel microscopic force constant model is given in figure 1. There the 
anion displacement patterns Fs,( 19) of the symmetric p-polarised GaAs-like  LO^ and 
 TO^ modes are compared with the corresponding envelopes Fb,(Z, 0 )  (6) for phonon 
propagation parallel (8 = 0) and perpendicular ( e  = n /2 )  to the superlattice growth 
direction. The modes are arranged according to the energy ordering-Loi,  LO^, TOI, 
 TO^, LOS,  TO^,  LO^ and ~07-resulting from the microscopic theory for 8 = 0. Generally 

”. 
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Figure 1. Anion displacement patterns of the GaAs-like p-polarised symmetric long-wave- 
length  LO^ and  TO^ modes of a (GaAs),(AIAs), (001) superlattice shown as vertical lines 
for phonon propagation parallel (0 = 0) and perpendicular (0 = n/2) to the growth direc- 
tion. The envelope functions (6)  resulting within the dispersionless continuum theory are 
shown for comparison (- - -). 

the polarisation direction z ( y )  for the confined Lon (Ton) phonons is presented. In the 
8 = n/2 case both polarisation directions y and z are drawn if the microscopic theory 
and continuum approach (including the identification of Lo7 and TOI as macroscopic 
interface phonons) give rise to displacements in different directions. Other modes are 
not presented. Antisymmetric displacement patterns do not differ for 8 = 0 and 
8 = n/2. Apart from the symmetry their behaviour is similar to that for symmetric 
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vibrations and 8 = 0. The s-polarised Ton modes exhibit completely the same dis- 
placement patterns in the x direction as the p-polarised modes for 8 = 0 and y polar- 
isation. 

The macroscopic and microscopic lineshapes as well as the directions of dis- 
placements in figure 1 agree essentially for 0 = 0, the case in which the long-range 
electric fields (2) and ( 5 )  are zero. The numbers of nodes are equal and both types of 
displacement vanish in the boundary regions. Small discrepancies concern the dis- 
placement amplitudes near the interfaces inside the GaAs material and the weak pen- 
etration of the lattice vibrations into the AlAs layers. In the 8 = n/2 case the same 
nearly perfect agreement is observed also for LOI, T03, LOS, TO5 and T07. The long-range 
electric fields E J 8 )  and Dj,(8) of the microscopic theory (2) almost vanish as in the 
continuum treatment. In the case of the other modes the situation is more complicated. 
The electric fields ( 5 )  which are only different from zero within the dispersionless 
continuum theory for the two interface modes LO7 and TOI also accompany the micro- 
scopic vibration  LO^ with respect to energy above Lo7 and TOI. This phonon exhibits 
partial interface character due to the inclusion of the bulk phonon dispersion. In the 
microscopic approach,  LO^ and TOI change the polarisation directions going from 8 = 0 
to 8 = n/2. From this point of view they should be classified as interface phonons. The 
displacement patterns indicate the same interface character. Despite the charac- 
terisation as interface phonon in the continuum approach, Lo7 describes a confined 
mode within the microscopic treatment. 

In summary, our strict comparison of lattice vibrational properties resulting within 
the continuum theory or a parallel microscopic model exhibits similarities but also 
limitations of the continuum approach neglecting bulk phonon dispersion. This remains 
valid even after utilisation of the uncertainties appearing in a dispersionless theory in 
an appropriate way and changing the solutions quoted usually in the conventional 
macroscopic approach. In more detail we state the following similarities and dis- 
crepancies 

(i) The spectrum resulting within a dispersionless theory is quite different from that 
obtained on inclusion of the bulk phonon dispersion. Apart from the interface modes 
the only vibronic levels of the continuum model are given by WLOb and WTOb. 

(ii) For all modes which are not accompanied by long-range electric fields Ejy( 8 )  and 
Djz( 8 )  the lineshapes of the displacement patterns resulting within the macroscopic 
continuum theory and a parallel microscopic model agree widely if appropriate solutions 
of the continuum approach are taken into account. 

(iii) Small discrepancies between the two theories mainly concern the boundary 
regions. The envelope functions vanish at the interfaces whereas the confinement in the 
microscopic theory is not complete owing to the finite bulk phonon dispersion. 

(iv) The comparison in the case of the p-polarised symmetrical  LO^ and  TO^ modes 
( 8  > 0) exhibits some problems due to the appearance of the long-range electric fields. 
In the dispersionless continuum theory these fields influence only the interface phonon 
branches. Owing to the inclusion of the bulk optical phonon dispersion in the microscopic 
description this field influence is more or less distributed among all p-polarised sym- 
metrical phonons. 

(v) The main failure of the continuum theory is due to the neglect of the bulk 
phonon dispersion. Boundary conditions of the macroscopic electrostatics can be further 
applied. 
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